organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Shan-Zhong Jian and Ming Lei*

Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China

Correspondence e-mail: minglei701@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C}-\text{C}) = 0.002 \text{ Å}$ R factor = 0.039 wR factor = 0.086 Data-to-parameter ratio = 17.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

7-(Benzyloxy)spiro[2H-1,3-benzoxazine-2,1'-cyclohexan]-4(3H)-one

In the title compound, $C_{20}H_{21}NO_3$, the dihedral angle between the two benzene rings is 8.79 (7)° and the cyclohexane ring adopts a chair conformation. The molecules are linked by paired N-H···O hydrogen bonds into centrosymmetric $R_2^2(8)$ dimers.

Comment

The molecular structure of (I) is shown in Fig. 1. The dihedral angle between the benzene ring of the 2*H*-benzoxazine system and the phenyl ring is $8.79 (7)^{\circ}$. The bulky, six-membered cyclohexane chair ring in the compound could be used in asymmetric induction, as we have reported previously (Jian *et al.*, 2005).

In the crystal structure, atom N1 acts as a hydrogen donor to atom O1 of a symmetry-related molecule (Table 1), leading to the formation of centrosymmetric $R_2^2(8)$ dimers (Fig. 2).

Experimental

To a mixture of 7-hydroxy-[2H-1,3-benzoxazine-2,1'-cyclohexan]-4(3H)-one (2.0 g, 8.6 mmol) and NaH (0.40 g, 11.7 mmol, 70%) in dimethylformamide (30 ml), benzyl chloride (0.9 ml, 8 mmol) was added dropwise. This mixture was stirred at room temperature for 30 min and then at 333 K overnight. CH₂Cl₂ (30 ml) and water

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1 The molecule of compound (I) in the crystal. Displacement ellipsoids are drawn at the 50% probability level.

Received 5 September 2005 Accepted 9 September 2005 Online 14 September 2005 (10 ml) were then added to the reaction mixture. The organic layer was washed successively with water (3 × 10 ml), dried over anhydrous Na₂SO₄ and evaporated *in vacuo*. Recrystallization of the resulting white solid from MeOH gave colourless crystals of (I) (m.p. 470–471 K). Spectroscopic analysis: ¹H NMR (500 MHz, CDCl₃, δ , p.p.m.): 1.39–2.11 (*m*, 10H), 5.08 (*s*, 2H), 6.52 (*s*, 1H), 6.66 (*brs*, 1H), 6.67 (*dd*, 1H), 7.35–7.44 (*m*, 5H), 7.83 (*d*, 1H).

 $D_x = 1.283 \text{ Mg m}^{-3}$

Cell parameters from 6953

Mo $K\alpha$ radiation

reflections $\theta = 2.6-27.5^{\circ}$

 $\mu = 0.09 \text{ mm}^{-1}$ T = 295 (2) K

Prism, colourless

 $R_{\rm int}=0.026$

 $\theta_{\rm max} = 27.5^{\circ}$

 $h = -7 \rightarrow 7$

 $k = -11 \rightarrow 11$

 $l = -39 \rightarrow 40$

 $0.26 \times 0.25 \times 0.2 \text{ mm}$

3819 independent reflections

2271 reflections with $I > 2\sigma(I)$

Crystal data

$C_{20}H_{21}NO_3$
$M_r = 323.38$
Monoclinic, $P2_1/c$
a = 6.0904 (2) Å
b = 8.9171 (3) Å
c = 30.8699 (8) Å
$\beta = 93.1470 \ (10)^{\circ}$
$V = 1673.98 (9) \text{ Å}^3$
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer ω scans Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T_{min} = 0.976, T_{max} = 0.983 7297 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.037P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.039$	where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.086$	$(\Delta/\sigma)_{\rm max} < 0.001$
S = 1	$\Delta \rho_{\rm max} = 0.14 \ {\rm e} \ {\rm \AA}^{-3}$
3819 reflections	$\Delta \rho_{\rm min} = -0.13 \ {\rm e} \ {\rm \AA}^{-3}$
222 parameters	Extinction correction: SHELXL97
H atoms treated by a mixture of	(Sheldrick, 1997)
independent and constrained	Extinction coefficient: 0.0164 (11)
refinement	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots O1^i$	0.87 (1)	1.98 (1)	2.8541 (15)	177 (1)
Symmetry code: (i)	-x + 2, -v + 1	-z + 1.		

Atom H1 was found in a difference Fourier map and refined freely. The H atoms of the methylene groups and of the aromatic ring were

A view of the dimer formed by paired N-H···O hydrogen bonds (dashed lines) in the crystal structure of (I). H atoms not involved in hydrogen bonds have been omitted for clarity. [Symmetry code: (i) 2 - x, 1 - y, 1 - z.]

placed in calculated positions, with C–H distances of 0.97 and 0.93 Å, respectively, and were included in the final cycles of the least-squares refinement as riding on their carrier atoms, with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}$ of the corresponding carrier atom.

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Rigaku/ MSC, 2004); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON* (Spek, 2003).

We thank the National Natural Science Foundation of China (grant No. 20272051) and the Teaching and Research Award Programme for Outstanding Young Teachers in Higher Education Institutions of the MoE, China.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Jian, S. Z., Ma, C. & Wang, Y. G. (2005). Synthesis, pp. 725–730.

Rigaku (1998). PROCESS-AUTO. Version, 1, 06. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2004). CrystalStructure. Version, **3**, 6.0. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381–5209, USA.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.